// Full disk encryption with Ubuntu (9.04 Jaunty or newer), LVM and LUKS

This article provides a step-by-step guide on how to install an Ubuntu Linux system with full disk encryption (new installation). However, you should take a relaxed day as topical newbie for further reading. You don't have to keep everything in mind but it is never an error to acquaint oneself with something new.

// Vollverschlüsseltes System mit Ubuntu (ab 9.04 Jaunty), LVM und LUKS

Dieser Artikel beschreibt, wie ein vollverschlüsseltes :lang_en: System mit Hilfe von Ubuntu-Linux eingerichtet wird (Neuinstallation). Der gesamte Artikel kann dabei Schritt für Schritt nachvollzogen werden um ans Ziel zu kommen. Dennoch sollte man sich als Neuling einen ruhigen Tag Zeit nehmen, um die Thematik zu erfassen. Man muss sich bei weitem nicht alles merken, sich aber einmal eingelesen zu haben schadet nie.

// GnuPG on Android with APG and K-9 Mail

I'm using a separate1) email address for my Android 2.2 based mobile phone. This makes it possible for close friends and my family to write me when I'm on the road. For free and without the need for crappy SMS phone GUIs. Additionally, it is very handy to mail yourself a grocery list or a quick note before leaving the house. ;-) However: All unencrypted2) mails for your phone are clear for the telco provider and others to see. But there are comfortable applications to change this.

Quick and superficial guide about the needed actions:

  1. Install the needed applications on your phone (click on the app names for QR Codes containing an Android Market search query):
  2. Generate a new key pair for your phone. IMHO, it is a bad idea to place your main private key on an unencrypted mobile device. The risk of theft/loosing it is too high. I created the new key pair on my PC (even it would be possible on Android) because I prefer some kind of key hierarchy :lang_de: and a keyboard makes the creation more comfortable. Additionally, it is not a bad idea to have a backup copy of the new key on your PC.
  3. Export you new key pair into .asc files:
    gpg -ao ~/privkey.asc --export-secret-key KEY-ID
    gpg -ao ~/pubkey.asc --export KEY-ID

    If you don't like the terminal, use Enigmail or another GPG GUI for the export. It is also a good idea to export the public keys of the persons you want to write encrypted mails from your phone. Even APG provides the possibility to use keyservers, it makes no fun to search and import dozens of keys using that way.

  4. Copy the .asc files on your phone (e.g. via USB), the location does not matter (you can delete these files after the import was done).
  5. On your phone:
    1. Open APG→click Menu button→“Manage Public Keys”. The screen changes→click Menu button→“Import Key”. The program is asking where the .asc file containing your public key to import is located. Click on the file browser icon and run the action with “ASTRO”. Browse to the file and click on it. Check “Delete After Import” and click OK.
    2. Open APG→click Menu button→“Manage Private Keys”. The screen changes→click Menu button→“Import Key”. The program is asking where the .asc file to containing your private key to import is located. Click on the file browser icon and run the action with “ASTRO”. Browse to the file and click on it. Check “Delete After Import” and click OK.
    3. Open K-9-Mail→click Menu button→“More”→“Accounts”. The sceen changes→Click and hold on your account→“Advanced”→Cryptography→Select “APG” as the OpenPGP Provider. And check “Auto-sign” if it makes sense for you.

That's all. But you should know that K-9 Mail brings no support for PGP/MIME right now. This means you have to tell your friends to write Inline-PGP encoded mails, not PGP/MIME mails. But this should be default in most environments. If not: Enigmail provides a non-global select box for this setting at the “Per-Recipient Rules” menu.

1)
I don't want all of my emails on my mobile
2)
Only an insignificant amount of unencrypted mails are hitting my mailbox. It was a lot of work LOL but nearly everybody who writes mails to me is using GnuPG. Even my Mom. No excuses for not using it!

// Protect your email address with reCAPTCHA

reCAPTCHA is a well known service and used by many websites. But a little know feature is their email address protection service. Just enter your mail address, click on “Protect It!” and everyone who wants to see your address has to solve a CAPTCHA before it will be shown. You will get a common link3) and HTML source code where only a part of your mail address is replaced:4)

Examples, created with the address foobar@example.com:

  • http://www.google.com/recaptcha/mailhide/d?k=01rhhtdpw4VPtj-ejfKMpwEw==&c=VGXKsGQ8aXgpBQISADqLu1SFbEYkjlSIeDbzeRHbKL4=

    Simply copy & paste the URL or use something like “Click to see my address” when you are able to create links with custom text.

  • foo<a href="http://www.google.com/recaptcha/mailhide/d?k=01rhhtdpw4VPtj-ejfKMpwEw==&amp;c=VGXKsGQ8aXgpBQISADqLu1SFbEYkjlSIeDbzeRHbKL4=" onclick="window.open('http://www.google.com/recaptcha/mailhide/d?k\07501rhhtdpw4VPtj-ejfKMpwEw\75\75\46c\75VGXKsGQ8aXgpBQISADqLu1SFbEYkjlSIeDbzeRHbKL4\075', '', 'toolbar=0,scrollbars=0,location=0,statusbar=0,menubar=0,resizable=0,width=500,height=300'); return false;" title="Reveal this e-mail address">...</a>@example.com

    This will produce something like “foo...@example.com”.

Actually an old hat, but I just saw tons of plain email addresses in a forum. The smarter ones replaced @/. with [a]/[dot]. While this is better then nothing, most bots should be intelligent enough to parse such replacements. reCAPTCHA FTW.

3)
perfect for IM, forums and stuff
4)
perfect for websites and everywhere you are allowed to use (X)HTML

// Full disk encryption with Ubuntu (9.04 Jaunty or newer), LVM and LUKS

I wrote a detailed guide on how to install an encrypted Ubuntu Linux:

The setup is using LUKS and Logical Volume Manager (LVM) to get a secure and flexible system. And to make nearly everybody succeed, there is even a crypt-setup bash script, making the installation faster and easier.

Have fun. :-)

// Ebfe's Anti-B00TKIT Project

The “Ebfe's Anti-B00TKIT Project” is a simple but effective protection against Bootkits, suitable for daily usage. It makes it possible to know if your bootloader was manipulated before booting from disk. A really interesting tool for high-security environments and paranoid persons. :-P

Bootkits5) are used to attack a full disk encryption6) (amongst other things). All “common” data is encrypted on such systems except a small, “special” part: the bootloader. Expressed in simplified terms, the bootloader is needed to store a program which prompts the user for the password to decipher the data and start the encrypted operating system. Bootkits are trying to manipulate the bootloader, making it possible to log the password the user enters and store it within the unencrypted part of the disk afterwards. The user does not see this, he simply gets the normal encryption password promt to start the system. This enables the attacker to come back later to read out the plain, unencrypted password the bootkit stored for him.

Ebfe's Anti-B00TKIT provides a CD to boot from before booting from disk. The program on CD reads out the Master Boot Record entries and displays their checksums (this does only need a few seconds). If all checksums are OK, you can going on to boot from disk by pressing a key. If the checksums are not the same as every day, your harddisk's bootloader was manipulated. To make this check more comfortable, you can create a custom CD containing your original MBR checksums. The CD is able to highlight non-matching checksums automatically then.

Visit the project website for screenshots, how-to and download.

5)
for example the Stoned Bootkit on MS Windows
6)
e.g. LUKS on Ubuntu or TrueCrypt on Windows

// Udo Vetter: Sie haben das Recht zu schweigen

RA Udo Vetters Vortrag, gehalten auf dem 23C3:7)

"Durchsuchung, Beschlagnahme, Vernehmung - Strategien für den Umgang mit Polizei und Staatsanwalt"

Beschreibung:

[…] Wer online lebt und arbeitet, tut dies unter den Augen der Strafverfolger. Der Vortrag schildert, wie Durchsuchungen, Vernehmungen und Ermittlungsverfahren ablaufen. Er erklärt, wie man sich gegenüber Polizei und Staatsanwaltschaft richtig verhält. […]

Die Folien (PPT) sind ebenfalls online verfügbar, die Video-Datei8) kann auf der verlinkten Vortragsseite direkt heruntergeladen werden.9)

7)
viele (inkl. mir selbst), werden das Video schon lange kennen, aber ich hatte erst neulich ein Gespräch darüber, weshalb ich das Video mal wieder hervorkrame
8)
23C3-1346-de-sie_haben_das_recht_zu_schweigen.m4v
9)
falls sich dies einmal ändert, weitere Mirror s. Übersicht

// Links: IT security and privacy

// GnuPG-Schlüsselhierarchie: passender Algorithmus für jede Aufgabe, Schlüsselaustausch ohne Verlust des Web of Trust

Vor ein paar Wochen habe ich mir einen neuen Key für GnuPG/PGP (im Folgenden einfach “GPG” genannt) zugelegt, weil mein bisheriger abgelaufen ist. Das habe ich zum Anlass genommen meine Vorgehensweise beim Erstellen eines GPG-Schlüssels zu überarbeiten. Die Erkenntnisse will ich hier festhalten, vielleicht bringt es ja jemandem etwas ;-). Ziel war:

  • Fein granulare Schlüsselhierarchie: Eine GPG-Aufgabe → Ein Schlüssel.
  • Die verschiedenen Schlüssel sollen den jeweils passendsten Algorithmus für die Aufgabe verwenden und bei Bedarf nach relativ kurzer Zeitspanne verfallen dürfen.
  • :!: Der Austausch eines Schlüssels soll NICHT zur Folge haben, dass das eigene Web-of-Trust verloren geht.

Dabei ist der letzte Punkt IMHO der Wichtigste. Er erspart einem, dass man wieder mühsam Signaturen für die neue Schlüssel einsammeln muss (den neuen Key vor Ablauf des alten Key mit selbigen zu signieren ist IMHO nur eine Notlösung, aber besser als nichts). Die Vorteile liegen auf der Hand:

  • Geeignetere Algorithmen und Schlüsselstärken für die jeweilige Aufgabe
    Beispiel: RSA erzeugt irrsinnig lange Signaturen, ist aber gut für Verschlüsselung geeignet. Wenn man dennoch zur Verschlüsselung auf RSA setzen will, kann man seinen Signierschlüssel über DSA realisieren. Zudem kann man die nötige Schlüssellänge (Bit) besser zwischen Aufgabe und Performance abwägen.
  • Mehr Sicherheit
    Selbst wenn mal ein Schlüssel mit brachialer Großrechnerpower über Jahre geknackt werden könnte, so hat der Angreifer bei regelmäßig wechselnden Schlüsseln dann immer nur einen Teil der Daten und muss für weiteren Zugang zu älteren/neueren Daten erneut genausoviel Aufwand in Kauf nehmen. Dies gilt natürlich auch, wenn ein Schlüssel anderweitig kompromittiert wird (was wahrscheinlicher ist als Brute-Force). Es ist ein deutlicher Unterschied, ob jemand ein einziges Jahr oder z.B. fünfzehn Jahre Kommunikation nachvollziehen kann ;-). Oder ob nur ein Webserver-Login ermöglicht wird oder gleich alle jemals verschickten Daten entschlüsselt werden können.

Grundlage

Damit man mit häufiger wechselnden Schlüsseln nicht andauernd sein Web-of-Trust ruiniert, fußt dass im Folgenden beschriebenen Szenario auf einem Hautpsignierschlüssel, welcher ausschließlich dazu verwendet wird, die eigenen und fremden Schlüssel zu zertifizieren (Certify), und nicht10) abläuft. D.h. dieser Schlüssel hat nur den Zweck, Dritten bei Verwendung der nach kürzerer Zeit11) wechselnden Unterschlüssel zu beweisen, dass der neue Schlüssel wirklich unter meiner Kontrolle steht und die damit verschlüsselten Inhalte auch nur mir zugänglich sein werden. Das muss man aber nicht extra “aufdröseln” oder “zusammenfrickeln”, da alle Identitäten immer am Hauptschlüssel hängen.

Die lange Laufzeit dieses Hautpsignierschlüssels ist dabei wenig sicherheitskritisch, da ein Angreifer damit “nur” die Identität fälschen könnte und so Kommunikationspartner ggf. weismachen, er sei ich. Er kommt aber nicht an bereits verschlüsselte Inhalte. Dies steht in keinem Verhältnis einen Großrechner Jahrzehnte zu beschäftigen, um den Hautpsignierschlüssel zu knacken. Man wird die Rechenzeit lieber in das “knacken” der Inhalte investieren als “lediglich” in das fälschen der Identität - es gibt zum Einen sicher billigere Wege, einem Dritten vorzugaukeln, man sei ich und zum Anderen könnte ich sofort einen neuen Key erstellen, nutzen und verbreiten (und damit all die Arbeit des Angreifers zu Nichte machen), sobald mir klar wird, dass jemand Drittes meine Identität zu fälschen versucht.

Nötiges GPG-Wissen

Dieser Text ist kein Anfänger-Tutorial, sondern ein Anwendungsbeispiel für fortgeschrittene GPG-Nutzer: Wer komplett neu ist, sollte sich zunächst 3-4 Tage Zeit nehmen und GPG kennen lernen12). Anschließend sollte die hier beschriebene Hierarchie aber gut umsetzbar sein, denn die Systematik dürfte auch für “neue” GPG-Nutzer Sinn ergeben.

Auch wenn man sich schon ein wenig mit GPG beschäftigt hat, ist es für den folgenden Text unabdingbar, zu 100% zu verstehen, was der Unterschied zwischen den verschiedenen Schlüsselfähigkeiten/Flags “Certify”, “Sign” und “Encrypt” ist. Außerdem sollte man wissen, dass verschiedene Algorithmen nicht mit jedem Flag kombiniert werden können. Daher will ich kurz darauf eingehen.

Die folgenden Flags können auf GPG-Schlüssel angewendet werden:

  • C: “Certify”
    Zertifizierung/Certification. Dient dazu Schlüssel (eigene/von Dritten) zu unterschreiben.
  • S: “Sign”
    Unterschreiben/Signing. Dient dazu Daten (eigene/von Dritten), z.B. eine Datei oder Text, zu unterschreiben.
  • E: “Encrypt”
    Verschlüsselung/Encryption. Dient dazu Daten (eigene/von Dritten), z.B. eine Datei oder Text, zu verschlüsseln.
  • A: “Authenticate”13)
    Authentifizieren. Dient dazu einen Aufrufe/challenge zu signieren. Kann z.B, genutzt werden, wenn der GPG-Schlüssel für einen (wie auch immer gearteten) Login genutzt werden soll, um der Kommunikationsgegenstelle beim challenge zu beweisen, dass man derjenige ist, für den man sich ausgiebt (also Identitätsnachweis), um so Zugriff auf einen Dienst zu erhalten. “Authenticate” ist also vergleichbar mit “Certify”/“Sign”, nur eben nicht für Schlüssel oder Daten, sondern für challenges. Kann je nach Software z.B. den Login via Passwort ersetzen oder ergänzen.

Die verschiedenen Algorithmen sind damit wie folgt kombinierbar:

  • RSA
    Alles. Ein RSA-Key kann mit Certify, Sign, Encrypt und Authenticate geflaggt werden.
  • DSA
    Ein nur zum signieren geeigneter Algorithmus, kann mit Certify, Sign und Authenticate geflaggt werden.
  • ElGamal
    Ein nur zum verschlüsseln geeigneter Algorithmus, kann nur mit Encrypt geflaggt werden.

Will man also verschlüsseln und signieren – was jeder GPG-Nutzer will ;-) – hat man daher die Wahl zwischen einem RSA-Hauptschlüssel mit RSA-Unterschlüssel(n) (⇒ RSA/RSA) oder einem DSA-Hauptschlüssel mit ElGamal-Unterschlüssel(n) (⇒ DSA/ElGamal bzw. DSA/ELG genannt). Auf die verschiedenen Algorithmen will ich hier nicht weiter eingehen, es sei nur gesagt, dass bisher geglaubt wurde (!=bewiesen), dass das dem DSA zu Grunde liegende mathematische Problem (Discrete logarithm problem :lang_en:) schwerer zu lösen sei, als das von RSA (Integer factorization problem), und daher ein RSA-Schlüssel mehr Bits aufweisen muss, um gleiche Sicherheit zu bieten. Allerdings kommen daran mehr und mehr Zweifel auf, und GPG wird u.a. daher in Zukunft auch den Default von DSA/ElGamal 1024/4096bit auf RSA 2048/2048bit ändern14). Es folgt dennoch eine kleine Entscheidungshilfe.

RSA:

  • Pro:
    • Sehr gut untersucht, weit verbreitet.
    • Offen entwickelt.
  • Contra:
    • Sehr lange Signaturen im vgl. mit DSA (fällt vor allem bei kurzen E-Mails ins Gewicht; selbst 4-5 Zeilen Text bringen immer 1-2 Zeilen à 80 Zeichen “Signaturlast” mit).
    • Weniger kompatibel zu sehr alten GPG-Versionen.

DSA:

  • Pro:
    • Kurze Signaturen
    • Hohe Kompatibilität zu sehr alten GPG-Versionen.
  • Contra:
    • Weniger untersucht als z.B. RSA
    • Kleine Keygröße macht DSA ggf. anfällig in Zukunft gebrochen zu werden. Der zu Grunde liegende Hash (SHA-1) ist zwar noch als vertrauenswürdig anzusehen, aber nicht mehr für neue kryptographische Anwendungen empfohlen.

Umsetzung

Genug Prosa, es wird konkreter. Ich will zeigen, wie man das Beschriebene umsetzen könnte. Ich erstelle daher beispielhaft eine Hierarchie, die 1:1 nachvollzogen werden kann (d.h. sie ist 100% praxistauglich):

  • Hautpsignierschlüssel (RSA-4096bit, Flag(s): Certify, Verfällt nie (=0))
    Nur zum zertifizieren eigener und fremder Schlüssel, also dem Aufbau/Erhalt eines Web-of-Trust. Alle Identitäten/User-IDs werden von GPG immer automatisch über den Hauptschlüssel integriert.
    • Unterschlüssel (DSA-1024bit, Flag(s); Sign, verfällt nach zwei Jahren (=2y))
      Dient nur dem Signieren von Daten (z.B. E-Mail). DSA statt RSA da sie Signaturen erheblich kürzer ausfallen.
    • Unterschlüssel (RSA-4096bit, Flag(s); Encrypt, verfällt nach zwei Jahren (=2y))
      Dient nur zum Verschlüsseln von Daten (z.B. E-Mail).
    • Unterschlüssel (RSA-4096bit, Flag(s); Authenticate, verfällt nach einem Jahr (=1y))
      Dient nur Authentifikationsprozessen (z.B. Login via SSH etc.).

Nun haben wir also für jede Aufgabe einen eigenen Schlüssel. Das Ganze funktioniert hervorragend, da GPG automatisch den passenden Schlüssel für die jeweilige Aufgabe auswählt. Das heißt, wenn eine Anwendung beispielsweise an GPG meldet “verschlüsseln eines Textes für den Empfänger john.doe@example.com” wird automatisch der passende Hauptschlüssel über die E-Mail-Identität john.doe@example.com sowie ein Unterschlüssel mit dem Flag Encrypt ausgewählt. Dabei stellt es überhaupt kein Problem dar, wenn der Unterschlüssel ein Verfallsdatum hat, der Hauptschlüssel jedoch nicht.

Dass der/die Unterschlüssel ein Verfallsdatum hat und der Hauptschlüssel nicht, ist im Grunde der Entscheidende Unterschied zu einem Default-Schlüsselpaar, das mit einem Verfallsdatum z.B. wie folgt aussähe:

  • Hautpsignierschlüssel (RSA oder DSA, Flag(s): Certify, Sign, Authenticate, verfällt in x Jahren)
    • Unterschlüssel (RSA oder ElGamal, Flags(s): Encrypt, verfällt in x Jahren)

Da der Hautpsignierschlüssel in der Default-Konfiguration ebenfalls abläuft, wenn man den zur Verschlüsselung genutzten Unterschlüssel aus Sicherheitsgründen ablaufen lässt, sind damit auch die ganzen Unterschriften/das Web of Trust im Eimer, da wie schon erwähnt alle Identitäten immer am Hautpsignierschlüssel hängen.

Der Text ist zwar auf *ix zugeschnitten, die Informationen sollten aber auch Nutzern anderer Betriebssysteme dienlich sein. Die Kommandozeilenausgaben können – je nach verwendeter GPG-Version – leicht variieren.

Per Default legt GPG Signierschlüssel mit den Flags Sign, Certify und Authenticate15) an. Um einen in unserem Aufbau benötigten Certify-only Schlüssel zu erhalten, wird die --expert-Option verwendet. Falls man einen DSA-Schlüssel mit mehr als 1024bit anlegen will, muss --enable-dsa2 verwendet werden (darauf verzichte ich in meinen Beispiel, das hauptsächlich auf RSA fußt und DSA aus Kompatibilitätsgründen “nur” mit 1024bit nutzt).

Erstellen des Hautpsignierschlüssels

Nochmal die Eckdaten: RSA-4096bit, Flag(s): C, Verfällt nie (=0).

Man rufe den passenden GPG-Schlüsseldialog auf:

gpg --gen-key --expert

Man wählt dort (7) RSA (eigene Fähigkeit setzen). GnuPG konfrontiert einen dann mit folgender Ausgabe:

Mögliche Aktionen für einen RSA Schlüssel: Unterschreiben Zertif. Verschlüsseln Authentifizieren 
Derzeitige erlaubte Aktionen: Unterschreiben Zertif. Verschlüsseln
[...]

Wie man sieht sind per Default für RSA die Flags Sign Certify Encrypt gesetzt. Wir wollen einen Certify-only 4096bit-Schlüssel, daher schalte ich die entsprechenden Fähigkeiten im Dialog um (→ S, E), so dass man folgende Ausgabe sehen sollte:

Mögliche Aktionen für einen RSA Schlüssel: Unterschreiben Zertif. Verschlüsseln Authentifizieren 
Derzeitige erlaubte Aktionen: Zertif. 
[...]

Jetz passen die Flags. Weiter geht's:

Ihre Auswahl? Q
RSA Schlüssel können zwischen 1024 und 4096 Bits lang sein.
Welche Schlüssellänge wünschen Sie? (2048) 4096
Die verlangte Schlüssellänge beträgt 4096 Bit
Bitte wählen Sie, wie lange der Schlüssel gültig bleiben soll.
         0 = Schlüssel verfällt nie
      <n>  = Schlüssel verfällt nach n Tagen
      <n>w = Schlüssel verfällt nach n Wochen
      <n>m = Schlüssel verfällt nach n Monaten
      <n>y = Schlüssel verfällt nach n Jahren
Wie lange bleibt der Schlüssel gültig? (0) 0
Schlüssel verfällt nie

Es folgen die persönlichen Angaben der Hauptidentität, d.h. man sollten den Namen und ggf. die “Haupt”-E-Mail-Adresse angeben.16) Alle Identitätsangaben können nachträglich editiert werden, weitere E-Mail-Adressen/Identitäten kann man ebenfalls später hinzufügen. Wenn man also in zwei Jahren die Firma und damit auch die berufliche E-Mail-Adresse wechselt ist das kein Problem.

Die Schlüsselgenerierung kann wirklich sehr lange dauern, u. U. sollte man schon mal 5-10 Minuten mitbringen.17)

Nach der Generierung sollte eine ähnlich lautende Meldung ausgegeben werden:

gpg: Schlüssel <KEYID> ist als uneingeschränkt vertrauenswürdig gekennzeichnet
Öffentlichen und geheimen Schlüssel erzeugt und signiert.

Diese <KEYID> sollte man sich für die folgenden Schritte notieren. Falls man es verpasst hat oder ein paar Tage später etwas ändern will, schlägt man sie einfach kurz via gpg --list-keys nach.18)

Erstellen der Unterschlüssel

Erzeugen der Unterschlüssel, wie direkt unter “Umsetzung” beschrieben.

Sign-only DSA-Unterschlüssel

Erstellen des Sign-only DSA-Unterschlüssels (DSA-1024bit, Flag(s); Sign, verfällt nach zwei Jahren (=2y)).

gpg --edit-key --expert Key-ID-des-Hauptschlüssels
Befehl> addkey

Nun muss man seinen Passphrase eingeben, um den Private-Key zu entsperren und den Unterschlüssel hinzufügen zu können.

Los geht's:

Bitte wählen Sie, welche Art von Schlüssel Sie möchten:
   (2) DSA (nur unterschreiben/beglaubigen)
   (3) DSA (eigene Fähigkeit setzen)
   (4) Elgamal (nur verschlüsseln)
   (5) RSA (nur signieren/beglaubigen)
   (6) RSA (nur verschlüsseln)
   (7) RSA (eigene Fähigkeit setzen)
Ihre Auswahl? 3

Mögliche Aktionen für einen DSA Schlüssel: Unterschreiben Authentifizieren 
Derzeitige erlaubte Aktionen: Unterschreiben 

   (S) Umschalten der Fähigkeit zum Unterzeichnen
   (A) die Fähigkeit zur Authentifizierung umschalten
   (Q) Beendet

Nun setzt/entfernt man also die Flags, die man nicht haben will. Für einen Sign-only-Schlüssel muss man, wie man an der Zeile Derzeitige erlaubte Aktionen: Unterschreiben sieht, nichts mehr ändern. Es kann also direkt weitergehen:

Ihre Auswahl? Q
Das DSA-Schlüsselpaar wird 1024 Bit haben.
Bitte wählen Sie, wie lange der Schlüssel gültig bleiben soll.
         0 = Schlüssel verfällt nie
      <n>  = Schlüssel verfällt nach n Tagen
      <n>w = Schlüssel verfällt nach n Wochen
      <n>m = Schlüssel verfällt nach n Monaten
      <n>y = Schlüssel verfällt nach n Jahren
Wie lange bleibt der Schlüssel gültig? (0) 2y
Key verfällt am <DATUM> <UHRZEIT>
Ist dies richtig? (j/N) j
Wirklich erzeugen? (y/N) y
Wir müssen eine ganze Menge Zufallswerte erzeugen.  Sie können dies
unterstützen, indem Sie z.B. in einem anderen Fenster/Konsole irgendetwas
tippen, die Maus verwenden oder irgendwelche anderen Programme benutzen.

Nun heißt es warten.

Ist alles erledigt, jetzt muss man die Änderungen speichern und kann anschließend wieder zur Konsole wechseln:

Befehl> save

Encrypt-only RSA-Unterschlüssel

Erstellen des Encrypt-only RSA-Unterschlüssels (RSA-4096bit, Flag(s); Encrypt, verfällt nach zwei Jahren (=2y)).

gpg --edit-key --expert Key-ID-des-Hauptschlüssels
Befehl> addkey

Nun muss man seinen Passphrase eingeben, um den Private-Key zu entsperren und den Unterschlüssel hinzufügen zu können.

Los geht's:

Bitte wählen Sie, welche Art von Schlüssel Sie möchten:
   (2) DSA (nur unterschreiben/beglaubigen)
   (3) DSA (eigene Fähigkeit setzen)
   (4) Elgamal (nur verschlüsseln)
   (5) RSA (nur signieren/beglaubigen)
   (6) RSA (nur verschlüsseln)
   (7) RSA (eigene Fähigkeit setzen)
Ihre Auswahl? 7

Mögliche Aktionen für einen RSA Schlüssel: Unterschreiben Verschlüsseln Authentifizieren 
Derzeitige erlaubte Aktionen: Unterschreiben Verschlüsseln 

   (S) Umschalten der Fähigkeit zum Unterzeichnen
   (E) Umschalten der Verschlüsselungsfähigkeit
   (A) die Fähigkeit zur Authentifizierung umschalten
   (Q) Beendet

Nun setzt/entfernt man also die Flags, die man nicht haben will. Für einen Encrypt-only-Schlüssel muss man, wie man an der Zeile Derzeitige erlaubte Aktionen: Unterschreiben Verschlüsseln sieht, noch den “Unterschreiben”/Sign-Flag entfernen und dazu wie folgt vorgehen:

Ihre Auswahl? S

Mögliche Aktionen für einen RSA Schlüssel: Unterschreiben Verschlüsseln Authentifizieren 
Derzeitige erlaubte Aktionen: Verschlüsseln 

   (S) Umschalten der Fähigkeit zum Unterzeichnen
   (E) Umschalten der Verschlüsselungsfähigkeit
   (A) die Fähigkeit zur Authentifizierung umschalten
   (Q) Beendet

Nun passt es. Weiter geht's:

Ihre Auswahl? Q
RSA Schlüssel können zwischen 1024 und 4096 Bits lang sein.
Welche Schlüssellänge wünschen Sie? (2048) 4096
Die verlangte Schlüssellänge beträgt 4096 Bit
Bitte wählen Sie, wie lange der Schlüssel gültig bleiben soll.
         0 = Schlüssel verfällt nie
      <n>  = Schlüssel verfällt nach n Tagen
      <n>w = Schlüssel verfällt nach n Wochen
      <n>m = Schlüssel verfällt nach n Monaten
      <n>y = Schlüssel verfällt nach n Jahren
Wie lange bleibt der Schlüssel gültig? (0) 2y
Key verfällt am <DATUM> <UHRZEIT>
Ist dies richtig? (j/N) j
Wirklich erzeugen? (y/N) y
Wir müssen eine ganze Menge Zufallswerte erzeugen.  Sie können dies
unterstützen, indem Sie z.B. in einem anderen Fenster/Konsole irgendetwas
tippen, die Maus verwenden oder irgendwelche anderen Programme benutzen.
[...]

Nun heißt es warten.

Ist alles erledigt, jetzt muss man die Änderungen speichern und kann anschließend wieder zur Konsole wechseln:

Befehl> save

Authenticate-only RSA-Unterschlüssel

Erstellen des Authenticate-only RSA-Unterschlüssels (RSA-4096bit, Flag(s); Authenticate, verfällt nach einem Jahr (=1y)).

gpg --edit-key --expert Key-ID-des-Hauptschlüssels
Befehl> addkey

Nun muss man seinen Passphrase eingeben, um den Private-Key zu entsperren und den Unterschlüssel hinzufügen zu können.

Los geht's:

Bitte wählen Sie, welche Art von Schlüssel Sie möchten:
   (2) DSA (nur unterschreiben/beglaubigen)
   (3) DSA (eigene Fähigkeit setzen)
   (4) Elgamal (nur verschlüsseln)
   (5) RSA (nur signieren/beglaubigen)
   (6) RSA (nur verschlüsseln)
   (7) RSA (eigene Fähigkeit setzen)
Ihre Auswahl? 7

Mögliche Aktionen für einen RSA Schlüssel: Unterschreiben Verschlüsseln Authentifizieren 
Derzeitige erlaubte Aktionen: Unterschreiben Verschlüsseln 

   (S) Umschalten der Fähigkeit zum Unterzeichnen
   (E) Umschalten der Verschlüsselungsfähigkeit
   (A) die Fähigkeit zur Authentifizierung umschalten
   (Q) Beendet

Nun setzt/entfernt man also die Flags, die man nicht haben will. Für einen Authenticate-only-Schlüssel muss man, wie man an der Zeile Derzeitige erlaubte Aktionen: Unterschreiben Verschlüsseln sieht, noch den “Unterschreiben”/Sign-sowie den “Verschlüsseln”/Encrypt-Flag entfernen und den “Authentifizierung”/Authenticate-Flag hinzufügen. Dazu geht man wie folgt vor:

Ihre Auswahl? S

Mögliche Aktionen für einen RSA Schlüssel: Unterschreiben Verschlüsseln Authentifizieren 
Derzeitige erlaubte Aktionen: Verschlüsseln 

   (S) Umschalten der Fähigkeit zum Unterzeichnen
   (E) Umschalten der Verschlüsselungsfähigkeit
   (A) die Fähigkeit zur Authentifizierung umschalten
   (Q) Beendet

Ihre Auswahl? E

Mögliche Aktionen für einen RSA Schlüssel: Unterschreiben Verschlüsseln Authentifizieren 
Derzeitige erlaubte Aktionen: 

   (S) Umschalten der Fähigkeit zum Unterzeichnen
   (E) Umschalten der Verschlüsselungsfähigkeit
   (A) die Fähigkeit zur Authentifizierung umschalten
   (Q) Beendet

Ihre Auswahl? A

Mögliche Aktionen für einen RSA Schlüssel: Unterschreiben Verschlüsseln Authentifizieren 
Derzeitige erlaubte Aktionen: Authentifizieren 

   (S) Umschalten der Fähigkeit zum Unterzeichnen
   (E) Umschalten der Verschlüsselungsfähigkeit
   (A) die Fähigkeit zur Authentifizierung umschalten
   (Q) Beendet

Nun passt es. Weiter geht's:

Ihre Auswahl? Q
RSA Schlüssel können zwischen 1024 und 4096 Bits lang sein.
Welche Schlüssellänge wünschen Sie? (2048) 4096
Die verlangte Schlüssellänge beträgt 4096 Bit
Bitte wählen Sie, wie lange der Schlüssel gültig bleiben soll.
         0 = Schlüssel verfällt nie
      <n>  = Schlüssel verfällt nach n Tagen
      <n>w = Schlüssel verfällt nach n Wochen
      <n>m = Schlüssel verfällt nach n Monaten
      <n>y = Schlüssel verfällt nach n Jahren
Wie lange bleibt der Schlüssel gültig? (0) 1y
Key verfällt am <DATUM> <UHRZEIT>
Ist dies richtig? (j/N) j
Wirklich erzeugen? (y/N) y
Wir müssen eine ganze Menge Zufallswerte erzeugen.  Sie können dies
unterstützen, indem Sie z.B. in einem anderen Fenster/Konsole irgendetwas
tippen, die Maus verwenden oder irgendwelche anderen Programme benutzen.
[...]

Jetzt heißt es warten.

Ist alles erledigt, jetzt muss man die Änderungen speichern und kann anschließend wieder zur Konsole wechseln:

Befehl> save

Weitere Identitäten hinzufügen

gpg --edit-key Key-ID-des-Hauptschlüssels
Befehl> adduid

Der folgende Dialog sollte selbsterklärend sein. Falls einem die Identitätsverwaltung via Konsole zu frickelick ist, dem kann ich Seahorse als grafische Oberfläche empfehlen.

Falls man sich mal vertippt hat: Editieren ist nicht möglich. Stattdessen muss man die fehlerhafte Identität löschen und anschließend neu anlegen.

Die Hauptidentität kann mittels

gpg --list-key Key-ID-des-Hauptschlüssels
Befehl> primary
Bitte genau eine User-ID auswählen.

Befehl> <NUMMER>

ausgewählt werden.

<NUMMER> entnimmt man der direkt darüber angezeigten Auflistung. Beispiel

[uneingeschränkt] (1).  John Doe (privat) <foobar@example.com>
[uneingeschränkt] (2)   John Doe (business) <business@example.com>

(1). ist die derzeitige Hauptidentität. Um (2) zur Hauptidentität zu machen, müsste man also

gpg --edit-key Key-ID-des-Hauptschlüssels
Befehl> primary
Bitte genau eine User-ID auswählen.

Befehl> 2

verwenden. Im der folgenden Auflistung ist die neue Hauptidentität mit einem Sternchen gekennzeichnet. Die Nummerierung ändert sich erst nach dem Speichern.

Ist alles erledigt, jetzt muss man die Änderungen speichern und kann anschließend wieder zur Konsole wechseln:

Befehl> save
Befehl> quit

Überprüfen

Alles was man gerade erstellt hat, kann man sich einfach auflisten lassen:

gpg --list-key Key-ID-des-Hauptschlüssels

Es sollte eine Ausgabe, erscheinen, die so ähnlich aussieht wie die Folgende:

pub   4096R/B55A743F <DATUM>
uid                  John Doe (privat) <foobar@example.com>
uid                  John Doe (business) <business@example.com>
sub   1024D/56F9EF32 <DATUM> [verfällt: <DATUM>]
sub   1024R/A99B3881 <DATUM> [verfällt: <DATUM>]
sub   2048R/6D0696AE <DATUM> [verfällt: <DATUM>]

Hinweise zum Verständnis:

  • Hinter pub findet sich der Hauptschlüssel.
  • Hinter sub findet sich jeweils ein Unterschlüssel
  • Hinter uid finden sich and den Hauptschlüssel angehängte Identitäten (User-IDs).
  • Die Bitstärke, Algorhithmus, Key-ID und Erstellungsdatum verstecken sich in hinter <BITS><ALGORHITMUS>/<KEYID> <DATUM>. R steht dabei für RSA, D für DSA und g für ElGamal.19)

Fertig. Die neue Schlüsselhierarchie ist einsatzbereit. Jetzt einfach den Publickey exportieren und wie gewohnt nutzen, unterschreiben lassen etc..

10)
oder erst nach vielen Jahren
11)
z.B. jährlich
12)
am besten die Einstiegs-Weblinks am Ende dieses Textes durcharbeiten und alles einmal ausprobieren
13)
seit GPG 1.4 verfügbar
15)
seit GPG 1.4
16)
es geht aber auch gänzlich ohne
17)
also nicht an der Meldung “Es sind nicht genügend Zufallswerte vorhanden. Bitte führen Sie andere Arbeiten durch, damit das Betriebssystem weitere Entropie sammeln kann!” verzweifeln, sondern einfach dem Rat folgen und ein wenig surfen, bis sich wieder etwas tut.
18)
Aufbau: pub <BITS><ALGORHITMUS>/<KEYID> <YYYY-MM-DD>. Die gesucht ID steht also hinter dem Schrägstrich.
19)
in der hier vorhanden Konfiguration nicht genutzt

// New GnuPG public key

I will write a posting about this key during the next weeks or so (Update: There it is). It comes with a nice hierarchy, making subkey changes possible without loosing the WebOfTrust plus usage of the best fitting algorithm for the different tasks.

20)
This URL always points to the latest key I am using – If I have to replace my current key for whatever reason, you'll get the new one here.

// Microsoft und gar nicht so zufällige Zahlen

Bruce Schneier hat einen neuen US-Standard zur Erzeugung von Zufallszahlen und den darin enthaltenen Generator Dual_EC_DRBG schon etwas länger im Visier, da er darin eine Backdoor für die NSA vermutet, die über die ggf. gar nicht so zufälligen Zahlen kryptographische Schlüssel angreifen könnte.

Nun ist Bruce Schneier ein bedeutender Krypto-Experte – um so unverständlicher (außer es ist etwas dran, an Schneiers Vermutung ;-)) ist es, dass Microsoft Dual_EC_DRBG ohne Veränderung im SP1 für Vista eingebaut hat und damit bald an seine Kunden ausliefert. Schneier rät daher allen Programmieren einschlägiger Software ab, Dual_EC_DRBG in den eigenen Programmen zu nutzen. Ein Rat, den man befolgen sollte.

// ZEIT online, Prof. Dieter Grimm: "Aus der Balance"

Deswegen darf man auch nicht der Beschwichtigung trauen, wer sich nichts vorzuwerfen habe, habe auch nichts zu befürchten. Jeder muss befürchten, dass seine Kommunikation überwacht wird. Niemand kann sicher sein, dass ihm daraus keine unangenehmen Folgen erwachsen.

Das sagt nicht irgendwer, sondern Prof. Dieter Grimm, Richter am Bunderverfassungsgericht a.D. in einem sehr lesenswerten Artikel mit dem Titel “Aus der Balance”. Herr Prof. Grimm betrachtet die Probleme und den Nutzen von verschärften Sicherheitsgesetzen trotz der Kürze des Textes IMHO ziemlich ausgewogen. Lesebefehl! ;-)

// Terahertz-Kameras

Heute las ich im heise-Forum eine Witzelei über “Röntgenkameras”. Das hat mir wieder in den Sinn gerufen, dass fast niemand um Terahertz-Strahlungsquellen weiß, die im Grunde genau dieses “röntgen” (im Sinne von “durchleuchten”) leisten, ohne Menschen dabei krebserregender Röntgenstrahlung auszusetzen.

In der Medizin hat diese Technik sicherlich großes, nützliches Potential, im Überwachungssektor macht mir so etwas hingegen Angst, wird einem doch die letzte Privatheit geraubt (z.B. zeichnen sich die Genitalien deutlich ab). Daher sollte die Technik zwar nicht verteufelt, aber politisch genau beobachtet werden. In Großbritannien wollte man diese “Röntgenkameras” bereits zur öffentlichen Überwachung einsetzten, bei uns wurde die Verwendung an Flughäfen diskutiert.21) Schon erstaunlich, wie bitter ernst so mancher Witz wird…

Noch ein kleiner, grober Hinweis zum Unterschied der Strahlung Röntgen liegen in etwa zwischen 2,5×1017Hz bis 6×1019 und sind ionisierend, daher krebserregend. Als Terahertzstrahlung versteht man normalerweise Strahlungsfrequenzen zwischen 3×109Hz bis 1013 Hz. Sie wirkt aufgrund der geringen Photonenenergie nicht ionisierend, weswegen sie nicht als krebserregend gilt. Zwischen Terahertz und Röntgen liegt also noch Infrarot, das sichtbare Licht und Ultraviolett.

21)
es erklang sogar das Wort “Nacktscanner” - mal sehen ob sich der Begriff durchsetzt
I'm no native speaker (English)
Please let me know if you find any errors (I want to improve my English skills). Thank you!
Recent Comments
QR Code: URL of current page
QR Code: URL of current page start (generated for current page)